
Abstract. Analytic formulae of the relativistic radial
functions of hydrogen-like atoms in the four-component
standard Dirac picture and in two approximations,
(Pauli and ZORA), to the two-component (so-called
SchroÈ dinger or Newton±Wigner) picture and graphs of
the respective relativistic changes of densities are pre-
sented and discussed. The two di�erent pictures of the
Dirac density of charge position and of the Newton±
Wigner density of mass position are remarkably di�erent
in strongly inhomogeneous ®elds and result in respective
di�erences in position-dependent expectation values,
hrmi. The fractional magnitudes of Drelhrmi, of
Dcharge=masshrmi, and of the gauge dependence of ZORA
(which for small n states is comparable to the di�erence
of the two kinds of position observables) are all of order
Z2a2.
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1 Introduction

Two approaches are common in relativistic quantum
chemistry, both at the ab initio independent-particle or
density functional levels and at the many-particle levels.
These two approaches are the four-component spinor
approach using the standard Dirac picture [1] and the
two-component approach using the so-called SchroÈ -
dinger or Newton±Wigner picture [2±5]. In general,
two-component formalisms are di�cult to obtain in

closed form; therefore, some type of expansion is
required, for instance, in terms of powers of the velocity
of light or of the electromagnetic coupling constant.
This is achieved by the Foldy±Wouthuysen transforma-
tion [6] or by the Regular Approximation (RA) [7±11],
for instance.

In this letter we want to illustrate how strongly the
two pictures di�er concerning the electron density
distribution function and also how well the densities
converge as power series of a2. With this aim, hydrogen-
like orbitals are analyzed and displayed. The theoretical
framework is reviewed in Sect. 2 and analytical formu-
lae are communicated in Sect. 3. Diagrams and an
analysis of the picture change of the electron density
function and of some expectation values are given in
Sect. 4.

2 Theoretical framework

In the ``standard'' representation of the four-component
Dirac equation [1] for a single particle in the electric
potential W �r�,
�ĤD ÿ E�WD

� b̂0mc2 � âp̂c� W �r� ÿ E
h i

WD � 0 ; �1�

r obviously has the meaning of the position of charge
in ordinary space. Here b̂0 � b̂ÿ 1 is chosen so that
electronic small energy states have jEj � mc2. The other
symbols have their usual meaning, with b̂0mc2 � âp̂c the
kinetic mass energy in the Dirac picture. The electronic
charge density distribution is then given by

qe�r� � WD�WD � juj2 � jvj2a2 ; �2�
where the four-spinor WD is represented by the two
two-spinors u; v:

WD � u
a � v

� �
: �3�
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Atomic units (�h � 1, me � 1, 4pe0 � 1, c � aÿ1
� 137:036) are used, a being Sommerfeld's ®ne structure
constant.

Both the state functions, WD or u, v, and the energy,
E, have convergent power expansions in a2, at least for
nonsingular potentials, W , for instance,

E � E�0� � a2E�1� � O�a4� ; �4�

qe � ju�0�j2 � a2 2Re�u�0�u�1�� � jv�0�j2
h i

� O�a4� ; �5�

where the nonrelativistic energy is

E�0� � 2Rehv�0�jr̂p̂ju�0�i ÿ 2mhv�0�jv�0�i
� hu�0�jW ju�0�i
� 2T �0� ÿ T �0� � W �0� � T �0� � W �0� �6�

and u�0� is the solution of the nonrelativistic SchroÈ dinger
equation

T̂ �0� � W ÿ E�0�
h i

u�0� � 0 : �7�

v�0� � r̂p̂u�0�=2m, and T̂ �0� is the nonrelativistic kinetic
energy operator in the SchroÈ dinger picture, p̂

2
=2m.

v does not appear in the nonrelativistic approximation
of O�a0� of the charge density q�0�e � ju�0�j2 or in the
respective expectation values such as the Coulomb
potential energy hÿ1=jrji or the electric dipole moment
he ri. Therefore, it has been suggested to introduce a
unitary transformation, U , of the relativistic equation
(Eq. 1) to upper two-component form for electronic
states, of the type [8]

V � ĤD ÿ E
� �

U � U�WD �
T̂ �0� � W � Dhÿ E 0

� �

" #
~u

0

� �
� 0 ; �8�

with ~u � u�0� � O�a2� and Dh � O�a2�. V � may be
chosen as U�. A general form of norm-conserving U ,
U U� � 1, is

U � 1=
������������������
1� XX�
p

1=
������������������
1� XX�
p � X

ÿ1= �������������������
1� X�X
p � X� 1=

�������������������
1� X�X
p

� �
; �9�

also with U�U � 1, although XX� 6� X�X in general.
The solution, ~u, of the respective two-component
relativistic wave equation

T̂ � W � Dhÿ E
� �

~u � 0 �10�
yields the charge density q�r� and the mass density ~q�r0�;

q�r� � ~q�r0� � j~u�r0�j2 ; �11�
where r0 � U�rU � r � u�a2�. That is, ~q�r0� � j~u�r0�j2 is
not the electric charge density in space r0, but the
probability density of the so-called average or particle or
mass position, r0. Accordingly, expectation values of
type h~ujrkj~ui have a modi®ed meaning, which has been
extensively discussed in the literature [2±5, 7, 11±16].

The transformation to Eq. (8) is achieved with X
obeying the recursive relation (cf. Ref. [8])

2mc X � r̂p̂ÿ X r̂p̂X ÿ a�X ;W � : �12�
Far from the nucleus, i.e. where r � Za2, both jV =mc2j
and jr̂p̂=mcj are small (with r̂p̂ acting on a bound state
function); then X also is small, X � r̂p̂=2mc and its
a2 expansion converges well. Near the nucleus, where
r� Za2, both jV =mc2j and jr̂p̂=mcj are large and
X � O��Za�sgn�j��, where j is the relativistic angular
momentum quantum number, j � �1 for s1=2, ÿ1 for
p1=2, +2 for p3=2 etc. Then other types of expansions such
as Douglas±Kroll±Hess (DKH) [17] or Chang±Pelissier±
Durand (CPD/RA) [8, 9], and the RA [7, 10, 11] (zero-
order ZORA, ®rst order FORA, etc.) are appropriate.

The elimination of the small component of the Dirac
equation yields

W � r̂p̂
1

2m� �E ÿ W �a2 r̂p̂ÿ E
� �

u � 0 : �13�

The Pauli or the a2 approximation to ZORA (ZORA2)
approaches correspond to suppressing �E ÿ W �=2mc2 or
E=�2mc2 ÿ W �, respectively, in the denominator and
then expanding in terms of a2 and keeping the lowest
order(s) only (and renormalizing in the Pauli case [18]).
The fraction between the r̂p̂s of Eq. (13) at the Dirac,
Pauli, and ZORA levels is plotted in Fig. 1. Obviously
the Pauli approximation breaks down in the strong-®eld
region near the nucleus, whereas ZORA is a good
approximation where the potential dominates, i.e. for
jW j � jEj > 0. On the other hand, ZORA causes errors
where jEj > jW j > 0, i.e. for large values of E and large
r, see Fig. 1 and Ref. [19]. While ZORA works well for
valence states with small jEj, it does not do so for E� 0
(deep core levels with small principal quantum numbers)
or for E� 0 [19].

Figure 1 might suggest shifting the gauge zero of the
potential W so that the energy of the state under

Fig. 1. The fraction in Eq. (13) and its ZORA and Pauli
approximations, arbitrary units. Gauge of potential is W ! 0 for
r!1
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discussion becomes zero, W ! W ÿ Ei; however, the
standard potential-energy zero is situated between the
bound and the free states and thus yields an ``unbiased''
ZORA Hamiltonian. Choosing E1s as the potential-
energy zero would yield an exact ZORA energy for the
1s state, but the ZORA Hamiltonian as a whole would
be biased with all states in the positive energy region (all
Ds in Fig. 1 positive) and all eigenfunctions being even
more incorrect, including ~uZORA

1s . Choosing Enj as the
potential-energy zero, the respective ZORA Dhrmim
(m = mass) value of the nj state is obtained from unj
and is identical to or similar to the respective Dirac
Dhrmic (c = charge) value, i.e. the Dhrmim value is not
appropriately reproduced.

3 Densities in di�erent pictures

3.1 The four-component Dirac picture

The hydrogenic Dirac orbitals are well known [20, 21].
Since the analytic expressions for the respective densi-
ties, qe�r; s�, are somewhat clumsy, the radial densities,
Pe�r� � r2

R
dX qe�r; s�, are directly plotted for later

comparison in Fig. 2. Using four-component Dirac
perturbation theory [22±24]1 to ®rst order in a2

(DPT2), the relativistically pertubed orbitals and densi-
ties are derived in unitary normalization (they di�er in
the latter respect from formulae in the literature [24]):

hWD
i jWD

j i�dij ;

hW�0�i jW�0�j i�hu�0�i ju�0�j i�dij ;

hW�1�i jW�0�j i�hW�0�i jW�1�j i�hu�1�i ju�0�j i
�hu�0�i ju�1�j i�hv�0�i jv�0�j i�0 :

One obtains for the radial wavefunctions Eqs. (14)±(21).
~c is the Euler±Mascheroni constant, ~c � 0:577216, and
u�r� and v�r� are the upper and lower components of the
orbitals, cf. Eq. (3), after integration over angles. For the
respective densities up to ®rst order in a2, Eq. (5), one
obtains Eqs. (22)±(25).

3.2 The two-component Newton±Wigner picture

Since a general analytic expression for U in Eq. (9) is not
known except for free electrons, one possible way is to
construct the decoupling transformation, U , in a recur-
sive manner. For the previously mentioned choices,
namely the Foldy±Wouthuysen and CPD expansions,
explicit formulae are obtained (the DKH approach
being a numerically available highly accurate intermedi-
ate [25]). Transforming the Pauli solutions of Moss
et al. [26, 27] to unitary normalization, we obtain
~u � ~u�0� � a2~u�1� with ~u�0� � u�0� and Eqs. (26)±(29).

The corresponding densities up to order a2 are dis-
played in Eqs. (30)±(33).

The ZORA densities for the standard gauge of the
electric potential are obtained from the Dirac functions,

u1s1=2�r� � 2Z3=2eÿZr 1ÿ Z2a2

2
ln�2Zr� � ~cÿ 5=4� �

� �
� O�a4� �14�

v1s1=2�r� � Z5=2eÿZr 1ÿ Z2a2

2
�ln�2Zr� � ~cÿ 7=4�

� �
� O�a4� �15�

u2s1=2�r� �
Z3=2

2
���
2
p eÿ

Z
2r �Zr ÿ 2� ÿ Z2a2

32

�
� Zr�2Zr � 16~cÿ 43��

�16�Zr ÿ 2� ln�Zr� ÿ 32~c� 46
��� O�a4� �16�

v2s1=2�r� �
Z5=2

8
���
2
p eÿ

Z
2r
�
�Zr ÿ 4� ÿ Z2a2

32

� Zr�2Zr � 16~cÿ 53��

�16�Zr ÿ 4� ln�Zr� ÿ 64~c� 124�
�
� O�a4�

�17�

u2p1=2
�r� � Z3=2

2
���
6
p eÿ

Z
2r
�

Zr ÿ Z2a2

96

� Zr�6Zr � 48~cÿ 109� � 48Zr ln�Zr� ÿ 72� �
�

� O�a4� �18�

v2p1=2
�r� � Z5=2

8
���
6
p eÿ

Z
2r
�
�Zr ÿ 6� ÿ Z2a2

96

� Zr�6Zr � 48~cÿ 163��

�48�Zr ÿ 6� ln�Zr� ÿ 288~c� 570�
�

� O�a4� �19�

u2p3=2
�r� � Z3=2

2
���
6
p eÿ

Z
2rZr

� 1ÿ Z2a2

96
24 ln�Zr� � 24~cÿ 47� �

� �
� O�a4� �20�

v2p3=2
�r� � Z5=2

8
���
6
p eÿ

Z
2rZr

� 1ÿ Z2a2

96
24 ln�Zr� � 24~cÿ 53� �

� �
� O�a4� �21�

1Some authors [14, 24] prefer the name ``direct'' perturbation
theory, since the perturbation expansion is performed ``directly''
with the Dirac operator, not after transformation to two-compo-
nent pictures
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qD
1s1=2
�r� � 4Z3eÿ2Zr 1ÿ Z2a2 ln�2Zr� � ~cÿ 3=2� �� 	�O�a4�

�22�

qD
2s1=2
�r� � 1

8
Z3eÿZr

�
�Zrÿ 2�2ÿ Z2a2

8

�
�Zrÿ 2�

�
�

Zr Zr� 8~cÿ 43

2

� �
ÿ 16~c� 23

� 8�Zrÿ 2� ln�Zr�
�
ÿ �Zrÿ 4�2

2

��
�O�a4� �23�

qD
2p1=2
�r� � 1

24
Z3eÿZr

�
�Zr�2 ÿ Z2a2

24

�
�
24�Zr�2 ln�Zr� � Zr

� �Zr�3Zr � 24~cÿ 56� ÿ 18� ÿ 54

��
� O�a4�

�24�

qD
2p3=2
�r� � 1

24
Z3eÿZr�Zr�2

� 1ÿ Z2a2

24
�12 ln�Zr� � 12~cÿ 25�

� �
� O�a4�

�25�

~u�1�1s1=2
�r� � ÿZ3=2eÿZr ln�2Zr� � ~cÿ 1ÿ 1

2Zr

� �
Z2 �26�

~u�1�2s1=2
�r� � ÿ Z3=2

32
���
2
p eÿ

Z
2r �

�
Zr�Zr � 8~cÿ 21� � 8�Zr ÿ 2�

� ln�Zr� ÿ 16~c� 18� 8

Zr

�
Z2 �27�

~u�1�2p1=2
�r� � ÿ Z3=2

96
���
6
p eÿ

Z
2r�Zr�3Zr � 24~cÿ 53�

� 24Zr ln�Zr� ÿ 48�Z2 �28�

~u�1�2p3=2
�r� � ÿ Z3=2

48
���
6
p eÿ

Z
2r

� �Zr�6~cÿ 11� � 6Zr ln�Zr� ÿ 6�Z2 �29�

~qP
1s1=2
�r� � 4Z3eÿ2Zr

� 1ÿ Z2a2 ln�2Zr� � ~cÿ 1ÿ 1

2Zr

� �� �
� O�a4�
�30�

~qP
2s1=2
�r� � 1

8
Z3eÿZr

�
�Zr ÿ 2�2 ÿ Z2a2

8
�Zr ÿ 2�

�
�

Zr�Zr � 8~cÿ 21� ÿ 16~c� 18

� 8�Zr ÿ 2� ln�Zr� � 8

Zr

��
� O�a4� �31�

~qP
2p1=2
�r� � 1

24
Z3eÿZr�Zr�2

�
1ÿ Z2a2

24

�
24 ln�Zr� � 3Zr

� 24~cÿ 53ÿ 48

Zr

��
� O�a4� �32�

~qP
2p3=2
�r� � 1

24
Z3eÿZr�Zr�2

� 1ÿ Z2a2

24
12 ln�Zr� � 12~cÿ 22ÿ 12

Zr

� �� �
� O�a4� �33�

~qZ
1s1=2
�r� � 4Z3eÿ2Zr

� 1ÿ Z2a2
Zr
2
� ln�2Zr� � ~cÿ 9

4

� �� �
� O�a4� �34�

~qZ
2s1=2
�r� � 1

8
Z3eÿZr �Zr ÿ 2�2 ÿ Z2a2

8
�Zr ÿ 2�

�

�
"

Zr
3

2
Zr � 8~cÿ 51

2

� �

�8�Zr ÿ 2� ln�Zr� ÿ 16~c� 27

��
� O�a4� �35�

~qZ
2p1=2
�r� � 1

24
Z3eÿZr�Zr�2

�
1ÿ Z2a2

24

�
24 ln�Zr�

� 9

2
Zr � 24~cÿ 127

2
ÿ 36

Zr

��
� O�a4� �36�

~qZ
2p3=2
�r� � 1

24
Z3eÿZr�Zr�2

�
�
1ÿ Z2a2

24

�
12 ln�Zr� � 12~cÿ 65

2
� 3

2
Zr
��

� O�a4� �37�

~qZ�r0� � N ju�r0k�j2 ; with the scale factor k � 1=
�1� a2EDirac=2m� [19] and N being a normalization
factor. Up to order a2 we obtain Eqs. (34)±(37). The
respective hri and h1=ri expectation values are displayed
in Table 1.

4 Results and discussion

Relativistic changes of densities [21] are plotted in Fig. 2
as DrelP �r� � �r2=Z3a2��q�r� ÿ q�0��r�� versus log10�Zr�.
Comparison of the Dirac density and its DPT2 approx-
imation illustrates the well-known fact that ®rst-order
perturbation theory in a2 (DPT2) is accurate for small Z
(Z � 1) or large j, while it yields too small relativistic
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corrections (here orbital contractions) for large Z
(Z � 100) and small j �j � 1=2�.

Concerning the two approximations to the Newton±
Wigner density, we remember that the Pauli approxi-

mation reproduces the term of O�a2� correctly, while
ZORA converges better at small r values. Since ZORA
yields energies too low, the classical turning point of the
state is shifted too strongly inwards and the relativistic
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Fig. 2. Relativistic change of radial densities DrelP �
�r2=Z3a2� Drelq�r� in di�erent pictures for the four lowest hydro-
gen-like states of nuclear charges Z � 1 and Z � 100 versus
log10�Zr� in atomic units. Dirac: full relativistic change of the

charge density in the Dirac picture; DPT2: lowest-order (a2) change
of the charge density; Pauli2 and ZORA2: the respective lowest-
order mass density changes as approximations to the Newton±
Wigner picture. The same scale is used for r and r0
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Table 1. Expectation values hri
and h1=ri of hydrogen-like
orbitals in atomic units for
nuclear charge Z. D are the
relativistic corrections, which
correspond to the curves in
Figs. 2 and 3 (note the
logarithmic abscissa there)

Level of
approximationa

Unit Hydrogenic orbital

1s1
2

2s1
2

2p1
2

2p3
2

hri Nonrelativistic n2/4Z 6 6 5 5
Dhric Dirac2 nZa2/32 )16 )35 )35 )8

Dirac (Z = 92) )18.4 )38.8 )38.8 )8.2
Dhrim Pauli2 nZa2/32 )24 )36 )34 )10

Newton±Wigner
(Z = 92)b

)24.7 )39.8 )37.7 )10.1

ZORA2 )28 )38 )37 )13
ZORA (Z = 92) )29.8 )41.8 )40.6 )13.1

h1ri Nonrelativistic Z/n2 1 1 1 1
Dh1ric Dirac2 Z3a2/24n3 12 30 30 6

Dirac (Z = 92) 18.6 47.5 47.5 6.6
Dh1rim Pauli2 Z3a2/24n3 24 42 26 8

ZORA2 18 27 27 9
ZORA (Z = 92) 29.3 41.4 41.4 9.9

aRelativistic corrections in the Dirac charge density (c) picture [Dirac2 is the ®rst-order Dirac
pertubation theory in a2 contribution of O�a2�] and in the Newton±Wigner mass density (m) picture
[Pauli2 is the Pauli approximation of O�a2�; ZORA is the regular approximation of O�E=�2mc2 ÿ W �
and ZORA2 the a2 contribution to it]
b Values calculated from Ref. [16]

ZORA2 ZORA
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Fig. 3. Relativistic change of
radial particle density at the
Pauli2, ZORA2 and ZORA
levels. See also legend of Fig. 2
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contraction of the Newton±Wigner particle density is
too large. The opposite holds for the Pauli approxima-
tion. Indeed, approaching the nucleus from large r val-
ues, the relativistic density contraction (negative DP
values) in Fig. 2 at the ZORA2 level sets in at larger r
values and is bigger than at the Pauli2 level. The rela-
tivistic reduction of the hri expectation values is also
more pronounced at the ZORA2 than at the Pauli2 level
[compare Dhrim, Pauli2 with ZORA2 or Newton±Wig-
ner (Z � 92) with ZORA (Z � 92) in Table 1]. We note
that the higher-order e�ects (the di�erence between
second order and the full contribution for Z � 92) are
rather similar for the Dirac and the Newton±Wigner and
the ZORA values, except concerning the 1s state. The
exceptional sensitivity of 1s to relativistic e�ects has
already been mentioned [16].

Concerning the di�erence between the Dirac charge
position and the Newton±Wigner mass position, it fol-
lows from the operator expressions in Table 1 of Ref.
[13] (see also Sect. 1.7 of Ref. [4]) that

hr2ic ÿ hr2im � hr2iDirac ÿ hr2iNewton±Wigner

� a2hs ji �38�
with

hs ji � hs�l� s�i � hs2i � hl � si � 3

4
� jÿ 1

2
; �39�

which is positive or negative for j positive �j � l� 1=2�
or negative �j � lÿ 1=2�, respectively [12]. The same re-
lation holds for hric ÿ hrim � a2Zj=4n2 [13] (Table 1).
The ZORA level is not accurate enough to reproduce
this trend (see the 2p1=2 values in Table 1).

The situation near the nucleus is more complicated.
At the Pauli level the relativistic damping of the poten-
tial divergency is not fully accounted for (Fig. 1). Al-
though the relativistic contraction of the Pauli function
is too weak in most regions of space, it becomes too
large in the vicinity of the nucleus. See the 1=Zr terms in
Eqs. (30)±(33) which are absent in Eqs. (34), (35), and
(37). Compare also the Pauli2 and ZORA2 curves of the
1s and 2s states for small r values in Fig. 2. On the other
hand, the comparison of ZORA2 and ZORA in Fig. 3
shows that higher-order terms of course become espe-
cially important in the vicinity of the nucleus. The Pauli2
approximation shows the right trend there.

Concerning the ZORA energies, the largest errors in
the relativistic corrections occur for the states of highest
j value for given n: at O�a2� DrelEZORA is twice as big as
DrelEDirac for 1s1=2, 2p3=2, 3d5=2 etc. [11, 19]. Concerning
other expectation values such as hri or h1=ri, ZORA, as
an approximation of the Foldy±Wouthuysen, i.e. New-
ton±Wigner, representation, yields qualitatively incor-
rect relativistic corrections also for other states. The
ZORA errors are of the same order of magnitude as the
relativistic corrections themselves or at least as the dif-
ferences between the Dirac and the Newton±Wigner

operators also for low j states such as 2s1=2 or 2p1=2.
Higher orders of the RA are needed for expectation
values, especially for Coulombic j � n states, even for
small nuclear charges. Note that the relativistic correc-
tions for given n are in general smallest for j � n and
therefore fractional di�erences and fractional correc-
tions are blown up for 2p3=2, 3d5=2, etc. On the other
hand, ZORA is known to be rather accurate for valence
states in many-electron systems [10, 11], for which the
di�erence of charge and mass position is known to be
small anyhow [13].
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